设数列
是各项均为正数的等比数列,其前
项和为
,若
,
.
(1)求数列
的通项公式;
(2)对于正整数
(
),求证:“
且
”是“
这三项经适当排序后能构成等差数列”成立的充要条件;
(3)设数列
满足:对任意的正整数
,都有
,且集合
中有且仅有3个元素,试求
的取值范围.
(本小题满分13分)
我们知道:人们对声音有不同的感觉,这与它的强度有关系,声音的强度用
(单位:
)表示,但在实际测量时,常用声音的强度水平
(单位:分贝)表示,它们满足公式:(
,其中
(
)),
是人们能听到的最小强度,是听觉的开始.请回答以下问题:
(Ⅰ)树叶沙沙声的强度为
(
),耳语的强度为
(
),无线电广播的强度为
(
),试分别求出它们的强度水平;
(Ⅱ)某小区规定:小区内公共场所
的声音的强度水平必须保持在
分贝以下(不含
分贝),试求声音强度
的取值范围.
.
(本小题满分13分)
在等比数列
中,
已知
,
.
(Ⅰ)求数列
的通项公式;
(Ⅱ)若
,求数列
的前
项和
.
设椭圆
的左、右焦点分别为
,上顶点为
,在
轴负半轴上有一点
,满足
,且
.
(
1)求椭圆
的离心率;
(2)若过
三点的圆恰好与
直线
相切,求椭圆
的方程;
(3)在(2)的条件下,过右焦点
作斜率为
的直线
与椭圆
交于
两点,在
轴上是否存在点
使得以
为邻边的平行四边形是菱形,如果存在,求出
的取值范围,如果不存在,说明理由。
设函数
(1)当
时,求
的最大值;
(2)令
,(
),其图象上任意一点
处切线的斜率
≤
恒成立,求实数
的取值范围;
某射手每次射击击中目标的概率是
,且各次射击的结果互不影响。
(Ⅰ)假设这名射手射击5次,求恰有2次击中目标的概率
(Ⅱ)假设这名射手射击5次,求有3次连续击中目标。另外2次未击中目标的概率;
(Ⅲ)假设这名射手射击3次,每次射击,
击中目标得1分,未击中目标得0分,在3次射击中,若有2次连续击中,而
另外1次未击中,则额外加1分;若3次全击中,则额外加3分,记
为射手射击3次后的总的分数,求
的分布列。