已知命题:“,使等式
成立”是真命题.
(1)求实数的取值集合
;
(2)设不等式的解集为
,若
是
的必要条件,求
的取值范围.
..(本题14分)三棱柱中,侧棱与底面垂直,
,
,
分别是
,
的中点.
(Ⅰ)求证:平面
;
(Ⅱ)求证:平面
;
(Ⅲ)求三棱锥的体积.
.(本题12分)为了调查某厂2000名工人生产某种产品的能力,随机抽查了位工人某天生产该产品的数量,产品数量的分组区间为
,
,
,
,
,频率分布直方图如图所示.已知生产的产品数量在
之间的工人有6位.
(Ⅰ)求;
(Ⅱ)工厂规定从生产低于20件产品的工人中随机的选取2位工人进行培训,则这2位工人不在同一组的概率是多少?
(本题12分)在中,
(Ⅰ)求AB的值;
(Ⅱ)求的值.
(本小题满分14分)已知数列的前
项和为
,点
在直线
上;数列
满足
,且
,它的前9项和为153.
(1)求数列、
的通项公式;
(2)设,数列
的前
项和为
,求使不等式
对一切
都成立的最大正整数
的值;
(3)设,是否存在
,使得
成立?若存在,求出
的值;若不存在,请说明理由.
(本小题满分14分)
设上的两点,
满足,椭圆的离心率
短轴长为2,0为坐标原点.
(1)求椭圆的方程;
(2)试问:△AOB的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.