游客
题文

(本小题共13分)某市为了了解本市高中学生的汉字书写水平,在全市范围内随机抽取了近千名学生参加汉字听写考试,将所得数据进行分组,分组区间为:[50,60),[60,70),[70,80),[80,90),[90,100],并绘制出频率分布直方图,如图所示.

(Ⅰ)求频率分布直方图中的a值;从该市随机选取一名学生,试估计这名学生参加考试的成绩低于90分的概率;
(Ⅱ)设A,B,C三名学生的考试成绩在区间[80,90)内,M,N两名学生的考试成绩在区间[60,70)内,现从这5名学生中任选两人参加座谈会,求学生M,N至少有一人被选中的概率;
(Ⅲ)试估计样本的中位数落在哪个分组区间内 (只需写出结论).
(注:将频率视为相应的概率)

科目 数学   题型 解答题   难度 较难
登录免费查看答案和解析
相关试题

:已知的三个内角,且其对边分别为,且.(1)求角的值;(2)若,求的面积.

:某公园准备建一个摩天轮,摩天轮的外围是一个周长为米的圆.在这个圆上安装座位,且每个座位和圆心处的支点都有一根直的钢管相连.经预算,摩天轮上的每个座位与支点相连的钢管的费用为元/根,且当两相邻的座位之间的圆弧长为米时,相邻两座位之间的钢管和其中一个座位的总费用为元。假设座位等距离分布,且至少有两个座位,所有座位都视为点,且不考虑其他因素,记摩天轮的总造价为元。
(1)试写出关于的函数关系式,并写出定义域;(2)当米时,试确定座位的个数,使得总造价最低?

(本小题满分16分)已知常数,函数
(1)求的单调递增区间;
(2)若,求在区间上的最小值
(3)是否存在常数,使对于任意时,
恒成立,若存在,求出的值;若不存在,说明理由。

(本小题满分16分)已知在直角坐标系中,,其中数列都是递增数列。
(1)若,判断直线是否平行;
(2)若数列都是正项等差数列,设四边形的面积为
求证:也是等差数列;
(3)若,,记直线的斜率为,数列前8项依次递减,求满足条件的数列的个数。

(本小题满分16分)如图,在直角坐标系中,三点在轴上,原点和点分别是线段的中点,已知为常数),平面上的点

(1)试求点的轨迹的方程;
(2)若点在曲线上,求证:点一定在某圆上;
(3)过点作直线,与圆相交于两点,若点恰好是线段的中点,试求直线的方程。

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号