(本小题满分7分)选修4—5:不等式选讲
已知,且
,
(Ⅰ)求证:;
(Ⅱ)若不等式
,对任意实数
恒成立,求实数
的取值范围.
(本题满分12分)在九江市教研室组织的一次优秀青年教师联谊活动中,有一个有奖竞猜的环节.主持人准备了A、B两个相互独立的问题,并且宣布:幸运观众答对问题A可获奖金1000元,答对问题B可获奖金2000元,先答哪个题由观众自由选择,但只有第一个问题答对,才能再答第二题,否则终止答题.若你被选为幸运观众,且假设你答对问题A、B的概率分别为、
.
(1) 记先回答问题A的奖金为随机变量, 则
的取值分别是多少?
(2) 你觉得应先回答哪个问题才能使你获得更多的奖金?请说明理由.
设an是正数组成的数列;其前n项和为Sn,且对所有的自然数n,an与2的等差中项等于Sn与2的等比中项,求数列{an}的通项公式。
已知A={a1,a2,a3,a4,a5},B={a12,a22,a32,a42,a52}, ai∈N(i=1,2,3,4,5)
设a1<a2<a3<a4<a5且A∩B={a1,a4},a1+a4=10,又A∪B元素之和为224,
求:(1)a1,a4(2)A
已知函数.
(1)求f()+f(-
)的值;
(2)当x∈(其中a∈(0, 1), 且a为常数)时,
f(x)是否存在最小值, 若存在, 求出最小值; 若不存在, 请说明理由.
设的周期
,最大值
,
(1)求、
、
的值;
(2).