(本小题满分13分)定义在上的函数
同时满足以下条件:
①在
上是减函数,在
上是增函数;
②是函数
的导函数且是偶函数;
③在
处的切线与直线
垂直.
(1)求函数的解析式;
(2)设函数,若存在
,使
成立,求实数
的取值范围.
用水清洗一堆蔬菜上残留的农药,对用一定量的水清洗一次的效果作如下假定:用一个单位的水可洗掉蔬菜上残留农药的,用水越多洗掉的农药量也越多,但总还有农药残留在蔬菜上.设用
单位量的水清洗一次以后,蔬菜上残留的农药量与本次清洗前残留的农药量之比为函数
.
⑴试规定的值,并解释其实际意义;
⑵试根据假定写出函数应满足的条件和具有的性质;
⑶设,现有
单位量的水,可以清洗一次,也可以把水平均分成两份后清洗两次.试问用那种方案清洗后蔬菜上残留的农药量比较少?说明理由.
已知函数f(x)=-x2+2ax+1-a在x∈[0,1]时有最大值2,求a的值.
(1)化简;
(2)已知且
,求
的值.
在△ABC中,角A,B, C所对边分别为a,b,c,且.
(1)求角A;
(2)若m,n
,试求|m
n|的最小值.
已知等差数列满足:
,
的前
项和为
.
(1)求及
;
(2)令(其中
为常数,且
),求证数列
为等比数列.