(本小题满分13分)定义在上的函数
同时满足以下条件:
①在
上是减函数,在
上是增函数;
②是函数
的导函数且是偶函数;
③在
处的切线与直线
垂直.
(1)求函数的解析式;
(2)设函数,若存在
,使
成立,求实数
的取值范围.
如图,在三棱柱ABC-A1B1C1中,侧棱AA1⊥底面ABC,AB⊥BC,D为AC的中点,AA1=AB=2,BC=3.
(1)求证:AB1∥平面BC1D;
(2)求四棱锥B-AA1C1D的体积.
如图四棱柱ABCD-A1B1C1D1的底面ABCD是正方形,O是底面中心,A1O⊥底面ABCD,AB=AA1=.
(1)证明:平面A1BD∥平面CD1B1;
(2)求三棱柱ABD-A1B1D1的体积.
直线l与椭圆+
=1(a>b>0)交于A(x1,y1),B(x2,y2)两点,已知m=(ax1,by1),n=(ax2,by2),若m⊥n且椭圆的离心离e=
,又椭圆经过点(
,1),O为坐标原点.
(1)求椭圆的方程.
(2)试问:△AOB的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.
给定椭圆C:+
=1(a>b>0),称圆心在原点O,半径为
的圆是椭圆C的“准圆”.若椭圆C的一个焦点为F(
,0),其短轴上的一个端点到F的距离为
.
(1)求椭圆C的方程和其“准圆”的方程.
(2)点P是椭圆C的“准圆”上的一个动点,过动点P作直线l1,l2使得l1,l2与椭圆C都只有一个交点,且l1,l2分别交其“准圆”于点M,N.
①当P为“准圆”与y轴正半轴的交点时,求l1,l2的方程;
②求证:|MN|为定值.
已知椭圆E:+
=1(a>b>0)的离心率e=
,a2与b2的等差中项为
.
(1)求椭圆E的方程.
(2)A,B是椭圆E上的两点,线段AB的垂直平分线与x轴相交于点P(t,0),求实数t的取值范围.