(本小题12分)某次的一次学科测试成绩的茎叶图和频率分布直方图都受到不同程度的污损,可见部分如图.
(Ⅰ)求参加测试的总人数及分数在[80,90)之间的人数;
(Ⅱ)若要从分数在[80,100)之间的试卷中任取两份分析学生失分情况,求在抽取的试卷中,恰有一份分数在[90,100)之间的概率.
已知动圆过定点,且与直线
相切.
(1)求动圆的圆心的轨迹
的方程;
(2)若曲线上一点
,是否存在直线
与抛物线
相交于两不同的点
,使
的垂心为
.若存在,求直线
的方程;若不存在,说明理由.
如图,弧是半径为
的半圆,
为直径,点
为弧
的中点,点
和点
为线段
的三等分点,平面
外一点
满足
,
.
(Ⅰ)证明:;
(Ⅱ)已知点为线段
上的点,且
,求当
最短时,直线
和平面
所成的角的正弦值.
在数列中,已知
.
(Ⅰ)求数列,
的通项公式;
(Ⅱ)设数列满足
,前
项和为
,若
对于所有的偶数均恒成立,求实数
的取值范围.
已知分别为
三个内角
的对边,
.
(Ⅰ)求的值;
(Ⅱ)若,求
的最大值.
已知,函数
.
(Ⅰ)若函数在
上单调,求实数
的取值范围;
(Ⅱ)若存在实数,满足
,
.求当
变化时,
的取值范围.