为了解某中学全校学生对排球、乒乓球、篮球、羽毛球、足球五项体育运动的喜爱情况,从中随机调查了若干名学生,并将调查结果绘制成统计表和统计图(不完整).
项目 |
人数 |
百分比 |
排球 |
10 |
5% |
乒乓球 |
45 |
|
篮球 |
58 |
29% |
羽毛球 |
|
37.5% |
足球 |
12 |
6% |
请根据图中提供的信息,解答下列问题:
(1)补全统计表和统计图.
(2)根据以上调查,估计该校1800名学生中,喜欢羽毛球的人数是多少?
解方程组:
如图,抛物线 交 轴于 , 两点,与 轴交于点 ,连接 , . 为线段 上的一个动点,过点 作 轴,交抛物线于点 ,交 于点 .
(1)求抛物线的表达式;
(2)过点 作 ,垂足为点 .设 点的坐标为 ,请用含 的代数式表示线段 的长,并求出当 为何值时 有最大值,最大值是多少?
(3)试探究点 在运动过程中,是否存在这样的点 ,使得以 , , 为顶点的三角形是等腰三角形.若存在,请求出此时点 的坐标;若不存在,请说明理由.
在 中, , 是中线, ,一个以点 为顶点的 角绕点 旋转,使角的两边分别与 、 的延长线相交,交点分别为点 、 , 与 交于点 , 与 交于点 .
(1)如图1,若 ,求证: ;
(2)如图2,在 绕点 旋转的过程中,试证明 恒成立;
(3)若 , ,求 的长.
如图,在 中, ,以 为直径的 分别交 、 于点 、 ,点 在 的延长线上,且 .
(1)求证: 是 的切线;
(2)若 的直径为4, ,求 .
如图,在平面直角坐标系中,一次函数 和 的图象相交于点 ,反比例函数 的图象经过点 .
(1)求反比例函数的表达式;
(2)设一次函数 的图象与反比例函数 的图象的另一个交点为 ,连接 ,求 的面积.