甲骑自行车、乙骑摩托车沿相同路线由A地到B地,行驶过程中路程与时间的函数关系的图象如图.根据图象解决下列问题:
(1)谁先出发?先出发多少时间?谁先到达终点?先到多少时间?
(2)分别求出甲、乙两人的行驶速度;
(3)在什么时间段内,两人均行驶在途中(不包括起点和终点)?在这一时间段内,请你根据下列情形,分别列出关于行驶时间x的方程或不等式(不化简,也不求解):① 甲在乙的前面;② 甲与乙相遇;③ 甲在乙后面.
如图,每个小方格都是边长为1个单位长度的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,
①写出A、B、C的坐标.
②以原点O为对称中心,画出△ABC关于原点O对称的△A1B1C1,并写出A1、B1、C1.
解方程:(2x+1)(x-4)=5
(2-3
)
+(2+
)(2-
)
配方法可以用来解一元二次方程,还可以用它来解决很多问题。例如:因为,所以
,即:
有最小值1,此时
;同样,因为
,所以
,即
有最大值6,此时
。
①当=时,代数式
有最(填写大或小)值为。②当
=时,代数式
有最(填写大或小)值为。
③矩形花园的一面靠墙,另外三面的栅栏所围成的总长度是16m,当花园与墙相邻的边长为多少时,花园的面积最大?最大面积是多少?
如图,已知⊙O上的三点A、B、C,且AB="AC=6" cm,BC=10cm
(1)求证:∠AOB=∠AOC
(2)求圆片的半径R(结果保留根号);
(3)若在(2)题中的R的值满足n<R<m(其中m、n为正整数),试估算m的最小值和n的最大值.