游客
题文

如图,过四棱柱形木块上底面内的一点和下底面的对角线将木块锯开,得到截面.

(1)请在木块的上表面作出过的锯线,并说明理由;
(2)若该四棱柱的底面为菱形,四边形时矩形,试证明:平面平面.

科目 数学   题型 解答题   难度 较难
知识点: 空间向量的应用
登录免费查看答案和解析
相关试题

已知函数f(x)=x3+ax2+bx+c,曲线y=f(x)在点x=1处的切线为l:3x-y+1=0,若x=时,y=f(x)有极值.
(1)求a,b,c的值;
(2)求y=f(x)在[-3,1]上的最大值和最小值.

已知函数 f ( x ) = 1 ( 1 - x ) n + + a ln ( x - 1 ) ,其中 n N * , a 为常数.
(1)当 n = 2 时,求函数 f ( x ) 的极值;
(2)当 a = 1 时,证明:对任意的正整数 n ,当 x 2 时,有 f ( x ) x - 1 .

设函数f(x)=(x>0且x≠1).
(1)求函数f(x)的单调区间;
(2)已知2>xa对任意x∈(0,1)成立,求实数a的取值范围.

已知函数f(x)=x3-ax2-3x.
(1)若f(x)在区间[1,+∞)上是增函数,求实数a的取值范围;
(2)若x=-是f(x)的极值点,求f(x)在[1,a]上的最大值;
(3)在(2)的条件下,是否存在实数b,使得函数g(x)=bx的图象与函数f(x)的图象恰有3个交点,若存在,请求出实数b的取值范围;若不存在,试说明理由.

已知函数f(x)=x3-ax-1.
(1)若f(x)在实数集R上单调递增,求实数a的取值范围;
(2)是否存在实数a,使f(x)在(-1,1)上单调递减?若存在,求出a的取值范围;若不存在,说明理由;
(3)证明:f(x)=x3-ax-1的图象不可能总在直线y=a的上方.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号