游客
题文

(本小题满分13分)
已知处的切线为
(I)求的值;
(II)若的极值;
(III)设,是否存在实数,为自然常数)时,函数的最小值为3.

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

已知数列 a n 是公差为 2 的等差数列, 其前 8 项的和为 64 . 数列 b n 是公比大于 0 的等比数列, b 1 = 4 , b 3 - b 2 = 48

(1)求数列 a n b n 的通项公式.

( 2 ) c n = b 2 n + 1 b n n N * .

(1) 证明: c n 2 - c 2 是等比数列.

(2) 证明: k = 1 n a k a k + 1 c k 2 - c 2 k < 2 2 n N * .

已知椭圆 x 2 a 2 + y 2 b 2 = 1 ( a > b > 0 ) 的右焦点为 F , 上顶点为 B , 离心率为 2 5 5 , 且 | BF | = 5 .

(1) 求椭圆的方程.

(2) 直线 l 与椭圆有唯一的公共点 M , 与 y 轴的正半轴交于点 N . 过 N BF 垂直的直线交 x 轴于点 P . 若 MP BF , 求直线 l 的方程.

如图, 在棱长为 2 的正方体 ABCD - A 1 B 1 C 1 D 1 中, E , F 分别为棱 BC , CD 的中点.

(1) 求证: D 1 F A 1 E C 1 .

(2) 求直线 A C 1 与平面 A 1 E C 1 所成角的正弦值.

(3) 求二面角 A - A 1 C 1 - E 的正弦值.

ABC 中, 内角 A , B , C 对边分别为 sin A : sin B : sin C = 2 : 1 : 2 , b = 2 .

(1) 求 a 的值.

(2) 求 cos C 的值.

(3) 求 sin 2 C - π 6 的值.

若无穷数列 { a n } 满足:只要 a p = a q ( p , q N * ) ,必有 a p + 1 = a q + 1 ,则称 { a n } 具有性质 P

(1)若 { a n } 具有性质 P ,且 a 1 = 1 a 2 = 2 a 4 = 3 a 5 = 2 a 6 + a 7 + a 8 = 21 ,求 a 3

(2)若无穷数列 { b n } 是等差数列,无穷数列 { c n } 是公比为正数的等比数列, b 1 = c 5 = 1 b 5 = c 1 = 81 a n = b n + c n ,判断 { a n } 是否具有性质 P ,并说明理由;

(3)设 { b n } 是无穷数列,已知 a n + 1 = b n + sin a n ( n N * ) ,求证:“对任意 a 1 { a n } 都具有性质 P ”的充要条件为“ { b n } 是常数列”.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号