(本小题满分14分)已知抛物线上一点到其焦点F的距离为4;椭圆的离心率,且过抛物线的焦点F.(I)求抛物线和椭圆的标准方程;(II)过点F的直线交抛物线于A、B两不同点,交轴于点N,已知,求证:为定值.(III)直线交椭圆于P,Q两不同点,P,Q在x轴的射影分别为,,,若点S满足:,证明:点S在椭圆上.
已知函数. (1)试判断的单调性,并证明你的结论; (2)若为定义域上的奇函数, ①求函数的值域; ②求满足的的取值范围.
已知指数函数(,且). (1)求的反函数的解析式; (2)解不等式:.
已知函数,(,且). (1)求函数的定义域; (2)判断函数的奇偶性,并予以证明.
如图,幂函数的图象关于轴对称,且与轴,轴均无交点,求此函数的解析式及不等式的解集.
已知集合,,是否存在实数,使?若存在,求实数的取值范围;若不存在,请说明理由.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号