游客
题文

(本小题满分14分)已知椭圆)经过点,离心率为,动点).
(1)求椭圆的标准方程;
(2)求以为坐标原点)为直径且被直线截得的弦长为的圆的方程;
(3)设是椭圆的右焦点,过点的垂线与以为直径的圆交于点,证明线段的长为定值,并求出这个定值.

科目 数学   题型 解答题   难度 较难
登录免费查看答案和解析
相关试题

(本题14分)某租赁公司拥有汽车100辆,当每辆车的月租金为3000元时,可全部租出.当每辆车的月租金每增加50元时,未租出的车将会增加一辆;租出的车每月需要维护费150元,未租出的车每辆每月需要维护费50元。
(1)当每辆车的月租金定为3 600元时,能租出多少辆车?
(2)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?

(本题12分)已知某几何体的俯视图是如图所示的矩形,正视图(或称主视图)是一个底边长为8、高为4的等腰三角形,左视图(或称侧视图)是一个底边长为6、高为4的等腰三角形.
(1)求该几何体的体积V;
(2)求该几何体的侧面积S.

(本题12分)在⊿ABC中,∠C的平分线所在的直线为x轴,若A、B坐标分别为A(3,2)、B(5,-3),求点C的坐标,并求⊿ABC的面积

数列,且的前项和.
(Ⅰ)求证:数列是等比数列,并求的通项公式;
(Ⅱ)如果对任意,不等式恒成立,求实数的取值范围.

已知抛物线的焦点为F,椭圆C的离心率为是它们的一个交点,且
(Ⅰ)求椭圆C的方程;
(Ⅱ)已知,点A,B为椭圆上的两点,且弦AB不平行于对称轴,的中点,试探究是否为定值,若不是,请说明理由。

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号