游客
题文

如图,在平面直角坐标系中,离心率为的椭圆的左顶点为,过原点的直线(与坐标轴不重合)与椭圆交于两点,直线分别与轴交于两点.若直线斜率为时,

(1)求椭圆的标准方程;
(2)试问以为直径的圆是否经过定点(与直线的斜率无关)?请证明你的结论.    

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

某商场为吸引顾客消费推出一项优惠活动.活动规则如下:消费额每满100元可转动如图所示的转盘一次,并获得相应金额的返券,假定指针等可能地停在任一位置.若指针停在A区域返券60元;停在B区域返券30元;停在C区域不返券.例如:消费218元,可转动转盘2次,所获得的返券金额是两次金额之和.

(1)若某位顾客消费128元,求返券金额不低于30元的概率;
(2)若某位顾客恰好消费280元,并按规则参与了活动,他获得返券的金额记为(元).求随机变量的分布列和数学期望.

已知命题p:“任意的x∈[1,2],x2-a≥0”;
命题q:“存在x0∈R,x02+2ax0+2-a=0”,若命题“p且q”是真命题.
求实数a的取值范围.

已知函数,函数g(x)的导函数,且
(1)求的极值;
(2)若,使得成立,试求实数m的取值范围:
(3)当a=0时,对于,求证:

已知椭圆,离心率为,左右焦点分别为
(1)求椭圆的方程;
(2)若直线与椭圆交于两点,与以为直径的圆交于两点,且满足,求直线的方程.

如图2,四边形为矩形,⊥平面,作如图3折叠,折痕,其中点分别在线段上,沿折叠后点叠在线段上的点记为,并且.(1)证明:⊥平面;
(2)求三棱锥的体积.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号