已知函数,则下列结论中正确的是 ( )
A.函数![]() ![]() |
B.函数![]() |
C.![]() ![]() |
D.函数![]() ![]() |
如图,四棱锥中,
,
是矩形,
是棱
的中点,
,
.
(1)证明;
(2)求直线与平面
所成角的正弦值.
已知函数.
(1)求函数的单调递减区间;
(2)设的最小值是
,求
的最大值.
如图,地在高压线
(不计高度)的东侧0.50km处,
地在
地东北方向1.00km处,公路沿线
上任意一点到
地与高压线
的距离相等.现要在公路旁建一配电房向
、
两地降压供电(分别向两地进线).经协商,架设低压线路部分的费用由
、
两地用户分摊, 为了使分摊费用总和最小,配电房应距高压线
A.1.21km | B.0.50km | C.0.75km | D.0.96km |
已知函数图象上一点
处的切线方程为
(Ⅰ)求的值;
(Ⅱ)若方程在
内有两个不等实根,求
的取值范围(其中
为自然对数的底,
);
(Ⅲ)令,如果
图象与
轴交于
,
中点为
,求证:
.
已知椭圆C:的离心率为
,以原点O为圆心,椭圆的短半轴长为半径的圆与直线
相切
(Ⅰ)求椭圆C的标准方程
(Ⅱ)若直线L:与椭圆C相交于A、B两点,且
求证:的面积为定值
在椭圆上是否存在一点P,使为平行四边形,若存在,求出
的取值范围,若不存在说明理由.