已知四棱锥P-ABCD,底面ABCD是、边长为
的菱形,又
,且PD=CD,点M、N分别是棱AD、PC的中点.
(1)证明:DN//平面PMB;
(2)证明:平面PMB平面PAD;
(3)求点A到平面PMB的距离.
袋中有大小、形状相同的红、黑球各一个,现一次有放回地随机摸取3次,每次摸取一个球
(I)试问:一共有多少种不同的结果?请列出所有可能的结果;
(Ⅱ)若摸到红球时得2分,摸到黑球时得1分,求3次摸球所得总分为5的概率。
如图,在四棱锥
中,平面
平面
,
,
是等边三角形,已知
.
(Ⅰ)设
是
上的一点,证明:平面
平面
;
(Ⅱ)求四棱锥
的体积.
设函数
的最小正周期为
.
(Ⅰ)求
的最小正周期.
(Ⅱ)若函数
的图像是由
的图像向右平移
个单位长度得到,求
的单调增区间.
等比数列
中,已知
.
(I)求数列
的通项公式;
(Ⅱ)若
分别为等差数列
的第3项和第5项,试求数列
的通项公式及前
项和
.
两县城 和 相聚20km,现计划在两县城外以 为直径的半圆弧 上选择一点C建造垃圾处理厂,其对城市的影响度与所选地点到城市的的距离有关,对城 和城 的总影响度为城 与城 的影响度之和,记 点到城 的距离为 ,建在 处的垃圾处理厂对城A和城B的总影响度为 ,统计调查表明:垃圾处理厂对城 的影响度与所选地点到城 的距离的平方成反比,比例系数为4;对城 的影响度与所选地点到城B的距离的平方成反比,比例系数为 ,当垃圾处理厂建在 的中点时,对称 和城 的总影响度为0.0065.
(Ⅰ)将 表示成 的函数;
(Ⅱ)讨论(Ⅰ)中函数的单调性,并判断弧 上是否存在一点,使建在此处的垃圾处理厂对城A和城B的总影响度最小?若存在,求出该点到城A的距离,若不存在,说明理由。