(本小题满分14分)设函数(
).
(1)当时,求过点
且与曲线
相切的切线方程;
(2)求函数的单调递增区间;
(3)若函数有两个极值点
,
,且
,记
表示不大于
的最大整数,试比较
与
的大小.
(本小题满分14分)在正方体中,棱长为2,
是棱
上中点,
是棱
中点.
(1)求证:面
;
(2)求三棱锥的体积.
(本小题满分12分)为调查乘客的候车情况,公交公司在某站台的60名候车乘客中随机抽取15人,将他们的候车时间(单位:分钟)作为样本分成5组,如下表所示:
(1)估计这60名乘客中候车时间少于10分钟的人数;
(2)若从上表第三、四组的6人中随机抽取2人作进一步的问卷调查,求抽到的两人恰好来自不同组的概率.
组别 |
候车时间 |
人数 |
一 |
![]() |
2 |
二 |
![]() |
6 |
三 |
![]() |
4 |
四 |
![]() |
2 |
五 |
![]() |
1 |
(本小题满分12分)已知函数,
的最大值是1,最小正周期是
,其图像经过点
.
(1)求的解析式;
(2)设、
、
为△ABC的三个内角,且
,
,求
的值.
(本小题满分14分)已知函数是奇函数,且图像在点
处的切线斜率为3(
为自然对数的底数).
(1)求实数、
的值;
(2)若,且
对任意
恒成立,求
的最大值.
(本小题满分14分)如图,已知椭圆的上顶点为
,离心率为
,若不过点
的动直线
与椭圆
相交于
、
两点,且
.
(1)求椭圆的方程;
(2)求证:直线过定点,并求出该定点
的坐标.