(理科)如图,已知椭圆的离心率为
,以该椭圆上的点和椭圆的左、右焦点
为顶点的三角形的周长为
.一等轴双曲线的顶点是该椭圆的焦点,设
为该双曲线上异于顶点的任一点,直线
和
与椭圆的交点分别为
和
.
(Ⅰ)求椭圆和双曲线的标准方程;
(Ⅱ)设直线、
的斜率分别为
、
,证明
;
(Ⅲ)是否存在常数,使得
恒成立?若存在,求
的值;若不存在,请说明理由.
(本小题满分14分)在一个特定时段内,以点E为中心的7海里以内海域被设为警戒水域.点E正北55海里处有一个雷达观测站A.某时刻测得一艘匀速直线行驶的船只位于点A北偏东且与点A相距40
海里的位置B,经过40分钟又测得该船已行驶到点A北偏东
(其中
,
)且与点A相距10
海里的位置C.
(1)求该船的行驶速度(单位:海里/小时);
(2)若该船不改变航行方向继续行驶.判断它是否会进入警戒水域,并说明理由
(本小题满分14分)设函数的图象经过点
.
(1)求的解析式,并求函数的最小正周期和最大值.
(2)若,其中
是面积为
的锐角
的内角,且
,
求和
的长.
(本小题满分14分)已知向量,函数
·
,
且最小正周期为.
(1)求的值;
(2)设,求
的值.
(3)若,求函数f(x)的值域;
(本小题满分14分)已知函数(其中A>0,
)的图象如图所示.
(1)求A,w及j的值;
(2)若,求
的值.
(本小题满分12分)在平面直角坐标系中,点A(-1,-2)、B(2,3)、C(-2,-1).
(1)求以线段AB、AC为邻边的平行四边形两条对角线的长;
(2)设实数t满足,求t的值.