(理科)已知顶点在坐标原点,焦点在轴正半轴的抛物线上有一点,点到抛物线焦点的距离为1. (1)求该抛物线的方程; (2)设为抛物线上的一个定点,过作抛物线的两条互相垂直的弦,,求证:恒过定点. (3)直线与抛物线交于,两点,在抛物线上是否存在点,使得△为以 为斜边的直角三角形.
(本小题满分12分) 已知函数是奇函数,并且函数的图像经过点. (1)求实数的值; (2)当时,求函数的值域.
(本小题满分12分) 已知圆C:的圆心为C,点,O为坐标原点. (1)求过点A和圆心的直线方程; (2)求过点A和原点O的直线被圆C所截得的弦长.
(本小题满分10分) 已知平面向量. (1)求向量的坐标; (2)当实数为何值时,与共线.
(本小题满分12分) 设函数在及时取得极值; (Ⅰ)求与b的值; (Ⅱ)若对于任意的,都有成立,求c的取值范围。
(本小题满分12分) 如图,平面,,,,分别为的中点. (Ⅰ)证明:平面; (Ⅱ)求与平面所成角的正弦值。
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号