如图,长方体中,,点分别在上,.过点的平面与此长方体的面相交,交线围成一个正方形.

(Ⅰ)在图中画出这个正方形(不必说出画法和理由);
(Ⅱ)求直线与平面所成角的正弦值.
设函数
的定义域为
,当
时,
,且对任意的实数
,有
.
⑴求
,判断并证明函数
的单调性;
⑵数列
满足
,且
①求
通项公式;
②当
时,不等式
对不小于
的正整数恒成立,求
的取值范围.
已知
为数列
的前
项和,
,
.
⑴设数列
中,
,求证:
是等比数列;
⑵设数列
中,
,求证:
是等差数列;
⑶求数列
的通项公式及前
项和.
【解题思路】由于
和
中的项与
中的项有关,且
,可利用
、
的关系作为切入点.
已知等差数列
与等比数列
中,
,求
的通项.
观察下面由奇数组成的数阵,回答下列问题:
⑴求第六行的第一个数;
⑵求第20行的第一个数;
⑶求第20行的所有数的和.
首项为正数的数列
满足
.
(Ⅰ)证明:若
为奇数,则对一切
,
都是奇数;
(Ⅱ)若对一切
,都有
,求
的取值范围。