已知数列的前n项和为
,设数列
满足
.
(1)若数列为等差数列,且
,求数列
的通项公式;
(2)若,
,且数列
,
都是以2为公比的等比数列,求满足不等式
的所有正整数n的集合.
已知数列中,
(常数
),
是其前
项和,且
.
(1)试确定数列是否为等差数列,若是,求出其通项公式;若不是,说明理由;
(2)令.
如图所示,四边形ABCD是边长为2的正方形,平面ABCD,AF//DE,DE=2AF,BE与平面ABCD所成角的正切值为
.
(1)求证:AC//平面EFB;
(2)求二面角的大小.
2015年元旦联欢晚会某师生一块做游戏,数学老师制作了六张卡片放在盒子里,卡片上分别写着六个函数:分别写着六个函数:,
.
(1)现在取两张卡片,记事件A为“所得两个函数的奇偶性相同”,求事件A的概率;
(2)从盒中不放回逐一抽取卡片,若取到一张卡片上的函数是奇函数则停止抽取,否则继续进行,记停止时抽取次数为,写出
的分布列,并求其数学期望.
(本小题满分12分)已知函数.
(1)求函数的最小正周期及单调递减区间;
(2)当时,求
的最大值,并求此时对应的
的值.
已知双曲线的焦点到其渐近线的距离等于2,抛物线
的焦点为双曲线的右焦点,双曲线截抛物线的准线所得的线段长为4,则抛物线方程为
A.![]() |
B.![]() |
C.![]() |
D.![]() |