游客
题文

(本小题满分14分)
(1)当时,求证:
(2)当函数)与函数有且仅有一个交点,求的值;
(3)讨论函数)的零点个数.

科目 数学   题型 解答题   难度 较难
知识点: 不定方程和方程组
登录免费查看答案和解析
相关试题

如图是某重点中学学校运动场平面图,运动场总面积15000平方米,运动场是由一个矩形和分别以为直径的两个半圆组成,塑胶跑道宽8米,已知塑胶跑道每平方米造价为150元,其它部分造价每平方米80元,

(Ⅰ)设半圆的半径(米),写出塑胶跑道面积的函数关系式
(Ⅱ)由于受运动场两侧看台限制,的范围为,问当为何值时,运动场造价最低(第2问取3近似计算).

如图,在底面为平行四边形的四棱柱中,底面,,,

(Ⅰ)求证:平面平面
(Ⅱ)若,求四棱锥的体积.

设△ABC的三边a,b,c所对的角分别为A,B,C,
(Ⅰ)求A的值;
(Ⅱ)求函数的单调递增区间.

某市为增强市民的环境保护意识,面向全市征召义务宣传志愿者.现从符合条件的志愿者中随机抽取100名按年龄分组:第1组,第2组,第3组,第4组,第5组,得到的频率分布直方图如图所示.

(Ⅰ)若从第3,4,5组中用分层抽样的方法抽取6名志愿者参广场的宣传活动,应从第3,4,5组各抽取多少名志愿者?
(Ⅱ)在(1)的条件下,该市决定在第3,4组的志愿者中随机抽取2名志愿者介绍宣传经验,求第4组至少有一名志愿者被抽中的概率.

已知等差数列中,.
(Ⅰ)求数列的通项公式;
(Ⅱ)当取最大值时求的值.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号