已知下列三个方程:,
,
中,至少有一个方程有实根,求实数
的取值范围。
设函数的最大值为
,最小值为
,其中
.
(1)求、
的值(用
表示);
(2)已知角的顶点与平面直角坐标系
中的原点
重合,始边与
轴的正半轴重合,终边经过点
.求
的值.
已知向量m=(2sinx,cosx),n=(cosx,2cosx),定义函数f(x)=m·n-1.
(1)求函数f(x)的最小正周期;
(2)确定函数f(x)的单调区间、对称轴与对称中心.
如图,已知抛物线的焦点为F
过点
的直线交抛物线于A
,B
两点,直线AF,BF分别与抛物线交于点M,N
(1)求的值;
(2)记直线MN的斜率为,直线AB的斜率为
证明:
为定值
如图,三棱锥P ABC中,已知PA⊥平面ABC,△ABC是边长为2的正三角形,D,E分别为PB,PC中点
(1)若PA=2,求直线AE与PB所成角的余弦值;
(2)若PA,求证:平面ADE⊥平面PBC
已知椭圆:
与
正半轴、
正半轴的交点分别为
,动点
是椭圆上任一点,求
面积的最大值。