(本小题满分10分)如图,在平面直角坐标系中,点
,
在抛物线
上.
(1)求,
的值;
(2)过点作
垂直于
轴,
为垂足,直线
与抛物线的另一交点为
,点
在直线
上.若
,
,
的斜率分别为
,
,
,且
,求点
的坐标.
已知直线,曲线
(1)若且直线与曲线恰有三个公共点时,求实数
的取值;
(2)若,直线与曲线M的交点依次为A,B,C,D四点,求|AB+|CD|的取值范围。
(本小题满分15分)已知函数。
(1)若的图象有与
轴平行的切线,求
的取值范围;
(2)若在
时取得极值,且
时,
恒成立,求
的取值范围。
如图,矩形BCC1B1所在平面垂直于三角形ABC所在平面,BB1=CC
1=AC=2,
,又E、F分别是C1A和C1B的中点。
(1)求证:EF//平面ABC;
(2)求证:平面平面C1CBB1;
(3)求异面直线AB与EB1所成的角。
在中,
分别是角A、B、C的对边,
,且
(1)求角A的大小;
(2)记,作出函数
的图象。
已知曲线
所围成的封闭图形的面积为
,曲线
的内切圆半径为
.记
为以曲线
与坐标轴的交点为顶点的椭圆.
(Ⅰ)求椭圆
的标准方程;
(Ⅱ)设
是过椭圆
中心的任意弦,
是线段
的垂直平分线.
是
上异于椭圆中心的点.
(1)若
(
为坐标原点),当点
在椭圆
上运动时,求点
的轨迹方程;
(2)若
是
与椭圆
的交点,求
的面积的最小值.