(本小题满分12分)已知函数,且当时,的最小值为2,(1)求的值,并求的单调递增区间;(2)先将函数的图象上的点纵坐标不变,横坐标缩小到原来的,再将所得的图象向右平移个单位,得到函数的图象,求方程在区间上所有根之和.
已知a∈R,设关于x的不等式|2x-a|+|x+3|≥2x+4的解集为A. (1)若a=1,求A; (2)若A=R,求a的取值范围.
设a,b,c均为正数,且a+b+c=1,证明: (1)ab+bc+ac; (2)
已知函数 (1) (2)
设不等式的解集为A,且 (1)求的值 (2)求函数的最小值
已知函数f(x)=|2x-1|+|2x+a|,g(x)=x+3. (1)当a=-2时,求不等式f(x)<g(x)的解集; (2)设a>-1,且当x∈[-,)时,f(x)≤g(x),求a的取值范围.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号