如图,某市有一条东西走向的公路,现欲经过公路
上的
处铺设一条南北走向的公路
.在施工过程中发现在
处的正北
百米的
处有一汉代古迹.为了保护古迹,该市决定以
为圆心,
百米为半径设立一个圆形保护区.为了连通公路
、
,欲再新建一条公路
,点
、
分别在公路
、
上,且要求
与圆
相切.
(1)当距
处
百米时,求
的长;
(2)当公路长最短时,求
的长.
已知函数
(Ⅰ)当时,求函数
的最小值;
(Ⅱ)若对任意,
恒成立,试求实数
的取值范围.
已知各项均为正数的数列,
的等比中项。
(1)求证:数列是等差数列;
(2)若的前n项和为Tn,求Tn。
(12分)已知
(Ⅰ)求函数图象的对称中心的横坐标;
(Ⅱ)若,求函数
的值域。
. 函数的定义域为集合A,函数
的定义域为集合B.
(1)求A;(2)若BA,求实数
的取值范围。
已知定义在(-∞,—1)∪(1,+∞)上的奇函数满足:①f(3)=1;②对任意的x>2, 均有f(x)>0,③对任意的x>0,y>0.均有f(x+1)+f(y+1)=f(xy+1)
⑴试求f(2)的值;
⑵证明f(x)在(1,+∞)上单调递增;
⑶是否存在实数a,使得f(cos2θ+asinθ)<3对任意的θ(0,π)恒成立?若存在,请求出a的范围;若不存在,请说明理由.