游客
题文

(本题14分)已知函数
(1)若,试用定义证明:上单调递增;
(2)若,当时不等式恒成立,求的取值范围.

科目 数学   题型 解答题   难度 容易
登录免费查看答案和解析
相关试题

已知函数.
(Ⅰ)求函数的定义域;
(Ⅱ)若,求的值

已知函数,其中为自然对数的底数.
(Ⅰ)当时,求曲线处的切线与坐标轴围成的面积;
(Ⅱ)若函数存在一个极大值点和一个极小值点,且极大值与极小值的积为,求的值.

甲班有2名男乒乓球选手和3名女乒乓球选手,乙班有3名男乒乓球选手和1名女乒乓球选手,学校计划从甲乙两班各选2名选手参加体育交流活动.
(Ⅰ)求选出的4名选手均为男选手的概率.
(Ⅱ)记为选出的4名选手中女选手的人数,求的分布列和期望.

为集合的子集,且满足两个条件:

②对任意的,至少存在一个,使.

















则称集合组具有性质.
如图,作列数表,定义数表中的第行第列的数为.
(Ⅰ)当时,判断下列两个集合组是否具有性质,如果是请画出所对应的表格,如果不是请说明理由;
集合组1:
集合组2:.
(Ⅱ)当时,若集合组具有性质,请先画出所对应的行3列的一个数表,再依此表格分别写出集合
(Ⅲ)当时,集合组是具有性质且所含集合个数最小的集合组,求的值及的最小值.(其中表示集合所含元素的个数)

已知椭圆的离心率为,且椭圆上一点与椭圆的两个焦点构成的三角形周长为
(Ⅰ)求椭圆的方程;
(Ⅱ)设直线与椭圆交于两点,且以为直径的圆过椭圆的右顶点
面积的最大值.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号