(本小题满分12分)已知函数,其中
为常数.
(1)当时,
恒成立,求
的取值范围;(2)求
的单调区间.
(本小题满分12分)椭圆的中心为坐标原点
,焦点在
轴上,焦点到相应准线的距离以及离心率均为
,直线
与
轴交于点
,与椭圆
交于相异两点
、
,且
.(1)求椭圆方程;(2)若
,求
的取值范围.
(本小题满分12分)在数列
(1)(2)设
(3)求数列
(本小题满分12分)某陶瓷厂准备烧制甲、乙、丙三件不同的工艺品,制作过程必须先后经过两次烧制,当第一次烧制合格后方可进入第二次烧制,两次烧制过程相互独立.根据该厂现有的技术水平,经过第一次烧制后,甲、乙、丙三件产品合格的概率依次为,
,
,经过第二次烧制后,甲、乙、丙三件产品合格的概率依次为
,
,
.
(1)求第一次烧制后恰有一件产品合格的概率;(2)经过前后两次烧制后,合格工艺品的个数为,求随机变量
的期望.
对于定义域为的函数
,若同时满足:①
在
内单调递增或单调递减;②存在区间
,使
在
上的值域为
;那么把函数
(
)叫做闭函数.
(1) 求闭函数符合条件②的区间
;
(2) 若是闭函数,求实数
的取值范围.