如图,抛物线y=ax2+bx+c经过点A(﹣3,0),B(1.0),C(0,﹣3).
(1)求抛物线的解析式;
(2)若点P为第三象限内抛物线上的一点,设△PAC的面积为S,求S的最大值并求出此时点P的坐标;
(3)设抛物线的顶点为D,DE⊥x轴于点E,在y轴上是否存在点M,使得△ADM是直角三角形?若存在,请直接写出点M的坐标;若不存在,请说明理由.
某商场经营一种海产品,进价是每千克20元,根据市场调查发现,每日的销售量 (千克)与售价 (元 千克)是一次函数关系,如图所示:
(1)求 与 的函数关系式(不求自变量取值范围);
(2)某日该商场出售这种海产品获得了21000元的利润,该海产品的售价是多少?
(3)若某日该商场这种海产品的销售量不少于650千克,该商场销售这种海产品获得的最大利润是多少?
如图, 内接于 , 是 的直径,点 是 上的定点, 平分 交 于点 , ,交 延长线于点 .
(1)求证: 与 相切;
(2)作 于点 , 于点 ,试判断线段 、 、 三者之间的数量关系,并证明你的结论(不用尺规作图的方法补全图形).
如图,四边形 是矩形 ,要在矩形 内作一个以 为边的正方形 ,某位同学的作法如下:
①作 的平分线 . 交 于点 ;
②以点 为圆心, 长为半径画弧,交 于点 ,连接 .
(1)求证:四边形 是正方形;
(2)若 ,求图中阴影部分的面积.
在阳光大课间活动中,某校开展了立定跳远、实心球、长跑等体育活动,为了了解九年级一班学生的立定跳远成绩的情况,对全班学生的立定跳远测试成绩进行统计,并绘制了以下不完整的频数分布直方图和扇形图,根据图中信息解答下列问题.
(1)求九年级一班学生总人数,并补全频数分布直方图(标注频数);
(2)求 成绩段在扇形统计图中对应的圆心角度数;
(3)直接写出九年级一班学生立定跳远成绩的中位数所在的成绩段;
(4)九年级一班在 成绩段中有男生3人,女生2人,现要从这5人中随机抽取2人参加学校运动会,请用列表法或画树状图的方法求出恰好抽到一男一女的概率.
如图,一棵与地面垂直的笔直大树 ,在点 被大风折断后, 部分倒下,树的顶点 与斜坡 上的点 重合 , 都保持笔直),经测量 , , , ,求 的长. ,精确到