游客
题文

(选修4-4:坐标系与参数方程)
已知直线的极坐标方程为,圆的参数方程为为参数).
(1)请分别把直线和圆的方程化为直角坐标方程;
(2)求直线被圆截得的弦长.

科目 数学   题型 解答题   难度 中等
知识点: 坐标系 参数方程
登录免费查看答案和解析
相关试题

,求实数的值.

如图,已知椭圆过点,离心率为,左、右焦点分别为.点为直线上且不在轴上的任意一点,直线与椭圆的交点分别为为坐标原点.设直线的斜率分别为

(i)证明:
(ii)问直线上是否存在点,使得直线的斜率满足?若存在,求出所有满足条件的点的坐标;若不存在,说明理由.

已知函数
(1)求的单调区间;
(2)当时,判断的大小,并说明理由;
(3)求证:当时,关于的方程:在区间上总有两个不同的解.

已知椭圆的中心在原点,焦点在轴上.若椭圆上的点到焦点的距离之和等于4.
(1)写出椭圆的方程和焦点坐标.
(2)过点的直线与椭圆交于两点,当的面积取得最大值时,求直线的方程.

如图,矩形中,平面的中点.

(1)求证:平面
(2)若,求平面与平面所成锐二面角的余弦值.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号