(选修4-4:坐标系与参数方程)
已知曲线C1的极坐标方程为,以极点为原点,极轴为x轴的非负半轴建立平面直角坐标系,曲线C2的参数方程为
,求曲线C1与曲线C2交点的直角坐标
在四棱锥中,底面
是正方形,侧面
是正三角形,平面
底面
.
(Ⅰ)如果为线段VC的中点,求证:
平面
;
(Ⅱ)如果正方形的边长为2, 求三棱锥
的体积
在等差数列{an}中,为其前n项和
,且
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设,求数列
的前
项和
.
已知函数,
,且
的解集为
.
(Ⅰ)求的值;
(Ⅱ)若,且
,求证:
已知曲线的参数方程是
(φ为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线
的极坐标方程是ρ=2,正方形ABCD的顶点都在
上,且A,B,C,D依逆时针次序排列,点A的极坐标为
.
(Ⅰ)求点A,B,C,D的直角坐标;
(Ⅱ)设P为上任意一点,求
的取值范围.
如图,、
是圆
的半径,且
,
是半径
上一点:延长
交圆
于点
,过
作圆
的切线交
的延长线于点
.求证:
.