(本小题满分12分)为了促进学生的全面发展,贵州某中学重视学生社团文化建设,2014年该校某新生确定争取进入曾获团中央表彰的“海济社”和“话剧社”。已知该同学通过考核选拨进入两个社团成功与否相互独立,根据报名情况和他本人的才艺能力,两个社团都能进入的概率为,至少进入一个社团的概率为
,并且进入“海济社”的概率小于进入“话剧社”的概率。
(1)求该同学分别通过选拨进入“海济社”的概率和进入“话剧社”的概率
;
(2)学校根据这两个社团的活动安排情况,对进入“海济社”的同学增加1个校本选修课学分,对进入“话剧社”的同学增加0.5个校本选修课学分.求该同学在社团方面获得校本选修加分分数的分布列和数学期望。
(本小题满分12分)
某校从参加某次知识竞赛的同学中,选取60名同学将其成绩(百分制)(均为整数)分成6组后,得到部分频率分布直方图(如图),观察图形中的信息,回答下列问题.
(Ⅰ)求分数在[70,80)内的频率,并补全这个频率分布直方图;
(Ⅱ)从频率分布直方图中,估计本次考试的平均分;
(Ⅲ)若从60名学生中随机抽取2人,抽到的学生成绩在[40,70)记0分,在[70,100]记1分,用X表示抽取结束后的总记分,求X的分布列和数学期望.
(本小题满分12分)
如图, 在四面体ABOC中, , 且
.
(Ⅰ)设为为
的中点, 证明: 在
上存在一点
,使
,并计算
;
(Ⅱ)求二面角的平面角的余弦值。
(本小题满分12分)
在△ABC中,角A、B、C的对边分别为a、b、c, 向量 p="(sinA,b+c)," q=(a-c,sinC-sinB),
满足|p +q |="|" p-q |.
(Ⅰ) 求角B的大小;
(Ⅱ)设m=(sin(C+),
),n="(2k,cos2A)" (k>1), m·n有最大值为3,求k的值.
(本小题满分14分)己知函数.
(1) 求函数的定义域;(2) 求函数
的增区间;
(3) 是否存在实数,使不等式
在
时恒成立?若存在,求出实数
的取值范围;若不存在,请说明理由.
(本小题满分14分)已知圆:
及定点
,点
是圆
上的动点,点
在
上,点
在
上,
且满足=2
,
·
=
.
(1)若,求点
的轨迹
的方程;
(2)若动圆和(1)中所求轨迹
相交于不同两点
,是否存在一组正实数
,使得直线
垂直平分线段
,若存在,求出这组正实数;若不存在,说明理由.