(本小题满分10分)选修4-4:坐标系与参数方程
已知椭圆C:
,直线
(t为参数).
(Ⅰ)写出椭圆C的参数方程及直线
的普通方程;
(Ⅱ)设
,若椭圆C上的点P满足到点A的距离与其到直线
的距离相等,求点P的坐标.
(本题满分14分).如图所示,四棱锥P-ABCD的底面积ABCD是边长为1的菱形,
∠BCD=60°,E是CD的中点,PA⊥底面积ABCD,PA=
.
(Ⅰ)证明:平面PBE⊥平面PAB;
(Ⅱ) 过PC中点F作FH//平面PBD, FH交平面ABCD于H点,判定H点位于平面ABCD的那个具体位置?(无须证明)
(Ⅲ)求二面角A-BE-P的大小. 
(本题满分14分).如图,圆锥的轴截面SAB为等腰直角三角形,Q为底面圆周上的一点,如果QB的中点为C,OH⊥SC,垂足为H。
求证:BQ⊥平面SOC,
求证:OH⊥平面SBQ;设
,
,求此圆锥的体积。
(本题满分14分).如图,在棱长为4的正方体ABCD-A1B1C1D1中,E是D1C1上的一点且EC1=3D1 E,
(1) 求直线BE与平面ABCD所成角的正切值;
(2)求异面直线BE与CD所成角的余弦值. 
(本题满分12分).如图,在三棱柱ABC-
中,点E,D分别是
与BC的中点.
求证:平面
EB//平面AD
.
(本题满分12分).画出右边水平放置的几何体的三视图.