(本小题满分14分)如图,在三棱锥中,
,点
是线段
的中点,平面
平面
.
(1)在线段上是否存在点
, 使得
平面
? 若存在, 指出点
的位置, 并加以证明;若不存在, 请说明理由;
(2)求证:.
(本小题满分12分)在△中,角
、
、
所对的边分别为
、
、
,已知
.
(1)求的值;
(2)求的值.
(本小题满分12分)编号分别为的
名篮球运动员在某次篮球比赛中的得分记录如下:
(1)完成如下的频率分布表:
得分区间 |
频数 |
频率 |
![]() |
3 |
![]() |
![]() |
||
![]() |
||
合计 |
![]() |
![]() |
(2)从得分在区间内的运动员中随机抽取
人 , 求这
人得分之和大于
的概率.
已知是大于0的实数,函数
.
(Ⅰ)若曲线在点
处的切线平行与X轴,求
值;
(Ⅱ)求在区间
上的最小值;
(III)在(Ⅰ)的条件下,设是
上的增函数,求实数
的最大值。
已知椭圆(
)的离心率为
,且满足右焦点
到直线
的距离为
,
(Ⅰ)求椭圆的方程;
(Ⅱ)已知,过原点且斜率为
的直线
与椭圆交于
两点,求
面积的最大值。