如图,在四棱锥中,
平面
,底面
是菱形,
,
为
与
的交点,
为
上任意一点.
(Ⅰ)证明:平面平面
;
(Ⅱ)若平面
,并且二面角
的大小为
,求
的值.
辽宁广播电视塔位于沈阳市沈河区青年公园西侧,蜿蜒的南运河带状公园内,占地8000平方米.全塔分为塔座、塔身、塔楼和桅杆四部分.某数学活动小组在青年公园内的A处测得塔顶B处的仰角为45°. 在水平地面上,沿着A点与塔底中心C处连成的直线行走129米后到达D处(假设可以到达),此时测得塔顶B处的仰角为60°.
(1)请你根据题意,画出一个ABCD四点间的简单关系图形;
(2)根据测量结果,计算辽宁广播电视塔的高度(精确到1米).
解关于的一元二次不等式
.
设椭圆的方程为,斜率为1的直线不经过原点
,而且与椭圆相交于
两点,
为线段
的中点.
(1)问:直线与
能否垂直?若能,
之间满足什么关系;若不能,说明理由;
(2)已知为
的中点,且
点在椭圆上.若
,求椭圆的离心率.
在正方体中,
分别
的中点.
(1)求证:;
(2)已知是靠近
的
的四等分点,求证:
.
已知函数的定义域为
.设点P是函数图象上的任意一点,过点P分别作直线y=x和y轴的垂线,垂足分别为M、N.
(1)求证:是定值;
(2)判断并说明有最大值还是最小值,并求出此最大值或最小值.