(本题满分10分) 选修4—1:几何问题选讲
如图,已知AB是⊙O的直径,弦CD与AB垂直,垂足为M,E是CD延长线上的一点,且AB=10,CD=8,3DE=4OM,过F点作⊙O的切线EF,BF交CD于G
(Ⅰ)求EG的长;
(Ⅱ)连接FD,判断FD与AB是否平行,为什么?
设命题p:f(x)=
在区间(1,+∞)上是减函数;命题q:x1,x2是方程x2-ax-2=0的两个实根,且不等式m2+5m-3≥|x1-x2|对任意的实数a∈[-1,1]恒成立.若p∧q为真,试求实数m的取值范围.
已知向量a=
,b=
,且x∈
.
(1)求a·b及|a+b|;
(2)若f(x)=a·b-2λ|a+b|的最小值为-
,求正实数λ的值.
若复数z1与z2在复平面上所对应的点关于y轴对称,且z1(3-i)=z2(1+3i),|z1|=
,求z1.
A,B分别是单位圆与x轴、y轴正半轴的交点,点P在单位圆上,∠AOP=θ(0<θ<π),C点坐标为(-2,0),平行四边形OAQP的面积为S.
(1)求
·
+S的最大值;
(2)若CB∥OP,求sin
的值.
已知△ABC的内角A,B,C所对的边分别是a,b,c,设向量m=(a,b),n=(sin B,sin A),p=(b-2,a-2).
(1)若m∥n,求证:△ABC为等腰三角形;
(2)若m⊥p,边长c=2,C=
,求△ABC的面积.