已知椭圆的中心在坐标原点,焦点在
轴上,离心率为
,它的一个顶点恰好是抛物线
的焦点.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)若,
是椭圆
上关
轴对称的任意两点,设点
,连接
交椭圆
于另一点
,求证:直线
与
轴相交于定点
;
(Ⅲ)设为坐标原点,在(Ⅱ)的条件下,过点
的直线交椭圆
于
,
两点,求
的取值范围.
已知函数 .
(1)求 的定义域与最小正周期;
(2)讨论f(x)在区间 上的单调性.
已知,椭圆C以过点, ,两个焦点为 。
(Ⅰ)求椭圆C的方程;
(Ⅱ)E,F是椭圆C上的两个动点,如果直线AE的斜率与AF的斜率互为相反数,证明直线EF的斜率为定值,并求出这个定值。
设 ,且曲线 在 处的切线与x轴平行。
(Ⅰ)求 的值,并讨论 的单调性;
(Ⅱ)证明:当
某企业有两个分厂生产某种零件,按规定内径尺寸(单位:mm)的值落在(29.94,30.06)的零件为优质品。从两个分厂生产的零件中个抽出500件,量其内径尺寸,的结果如下表:
(Ⅰ)试分别估计两个分厂生产的零件的优质品率;
(Ⅱ)由于以上统计数据填下面 列联表,并问是否有99%的把握认为"两个分厂生产的零件的质量有差异"。
附:
如图,已知两个正方形ABCD 和DCEF不在同一平面内,M,N分别为AB,DF的中点。
(Ⅰ)若 , ,求直线MN的长;
(Ⅱ)用反证法证明:直线ME与BN是两条异面直线。