某股份有限公司根据公司实际情况,对本公司职工实行内部医疗公积金制度,公司规定:
(一)每位职工在年初需缴纳医疗公积金m元;
(二)职工个人当年治病花费的医疗费年底按表1的办法分段处理:
表1
分段方式 |
处理办法 |
不超过150元(含150元) |
全部由个人承担 |
超过150元,不超过10000元(不含150元,含10000元)的部分 |
个人承担n%,剩余部分由公司承担 |
超过10000元(不含10000元)的部分 |
全部由公司承担 |
设一职工当年治病花费的医疗费为x元,他个人实际承担的费用(包括医疗费个人承担的部分和缴纳的医疗公积金m元)为y元.
(1)由表1可知,当时,
;那么,当
时,y = ;
(用含m、n、x的方式表示)
(2)该公司职工小红和大明2014年治病花费的医疗费和他们个人实际承担的费用如表2:
职工 |
治病花费的医疗费x(元) |
个人实际承担的费用y(元) |
小红 |
300 |
280 |
大明 |
500 |
320 |
请根据表2中的信息,求m、n的值,并求出当时,y关于x函数解析式;
(3)该公司职工个人一年因病实际承担的费用最多只需要多少元?
已知,求代数式
的值.
(1);
(2);
(3).
抛物线与x轴的交点分别为原点O和点A,点B(2,n)在这条抛物线上.
(1)求点B的坐标;
(2)点P在线段OA上,从点O出发向点A运动,过点P作x轴的垂线,与直线OB交于点E,以PE为边在PE右侧作正方形PEDC(当点P运动时,点C、D也随之运动).
①当正方形PEDC顶点D落在此抛物线上时,求OP的长;
②若点P从点O出发向点A作匀速运动,速度为每秒1个单位,同时线段OA上另一个点Q从点A出发向点O作匀速运动,速度为每秒2个单位(当点Q到达点O时停止运动,点P也停止运动).过Q作x轴的垂线,与直线AB交于点F,在QF的左侧作正方形QFMN(当点Q运动时,点M、N也随之运动).若点P运动到t秒时,两个正方形分别有一条边恰好落在同一条直线上,求此刻t的值.
某厂销售一种专利产品,现准备从专卖店销售和电视直销两种销售方案中选择一种进行销售.若只是专卖店销售,销售价格y(元/件)与月销量x(件)的函数关系式为y =x+150,成本为40元/件,无论销售多少,每月还需支出房租费52500元,设月利润为w专(元)(利润=销售额-成本-广告费).若只是电视直销,销售价格为150元/件,受各种不确定因素影响,成本为a元/件(a为常数,40≤a≤80),当月销量为x(件)时,每月还需缴纳
x2元的广告费,设月利润为w电(元)(利润=销售额-成本-附加费).
(1)当x=1000时,y=元/件,w内=元;
(2)分别求出w专、w电与x间的函数关系式(不必写x的取值范围);
(3)当x为何值时,在专卖店销售的月利润最大?若是电视直销月利润的最大值与在专卖店销售月利润的最大值相同,求a的值;
(4)如果某月要将5000件产品全部销售完,请你通过分析帮公司决策,选择在专卖店还是电视直销才能使所获月利润较大?
已知一次函数y1=ax+b的图象与反比例函数y2=的图象相交于A、B两点,坐标分别为(—2,4)、(4,—2)。
(1)求两个函数的解析式;
(2)求△AOB的面积;
(3)直线AB上是否存在一点P(A除外),使△ABO与以B﹑P、O为顶点的三角形相似?若存在,直接写出顶点P的坐标。