某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局与某医院抄录了1至6月份每月10号的昼夜温差情况与因患感冒而就诊的人数,得到如下资料:
日 期 |
1月10日 |
2月10日 |
3月10日 |
4月10日 |
5月10日 |
6月10日 |
昼夜温差x(°C) |
10 |
11 |
13 |
12 |
8 |
6 |
就诊人数y(个) |
22 |
25 |
29 |
26 |
16 |
12 |
该兴趣小组确定的研究方案是:先从这六组数据中选取2组,用剩下的4组数据求线性回归方程,再用被选取的2组数据进行检验.
(Ⅰ)求选取的2组数据恰好是相邻两个月的概率;
(Ⅱ)若选取的是1月与6月的两组数据,请根据2至5月份的数据,求出y关于x的线性回归方程;
(Ⅲ)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问该小组所得线性回归方程是否理想?
(参考公式:,
)
如图所示,已知圆的直径
长度为4,点
为线段
上一点,且
,点
为圆
上一点,且
.点
在圆
所在平面上的正投影为
点,
.
(1)求证:平面
;
(2)求点到平面
的距离.
一般来说,一个人脚掌越长,他的身高就越高.现对10名成年人的脚掌长与身高
进行测量,得到数据(单位均为
)作为一个样本如上表示.
脚掌长(x) |
20 |
21 |
22 |
23 |
24 |
25 |
26 |
27 |
28 |
29 |
身高(y) |
141 |
146 |
154 |
160 |
169 |
176 |
181 |
188 |
197 |
203 |
(1)在上表数据中,以“脚掌长”为横坐标,“身高”为纵坐标,做出散点图后,发现散点在一条直线附近,试求“身高”与“脚掌长”之间的线性回归方程;
(2)若某人的脚掌长为,试估计此人的身高;
(3)在样本中,从身高180cm以上的4人中随机抽取2人作进一步的分析,求所抽取的2人中至少有1人身高在190cm以上的概率. (参考数据:,
)
在△ABC中,a、b、c分别是角A、B、C所对的边,满足
(1)求角B的大小;
(2)若,求函数
的值域。
对于在区间上有意义的两个函数
,如果对于任意的
,都有
则称
在区间
上是“接近的”两个函数,否则称它们在区间
上是“非接近的”两个函数。现有两个函数
给定一个区间
。
(1)若在区间
有意义,求实数
的取值范围;
(2)讨论在区间
上是否是“接近的”。
若S是公差不为0的等差数列
的前
项和,且
成等比数列。
(1)求等比数列的公比;
(2)若,求
的通项公式;
(3)设,
是数列
的前
项和,求使得
对所有
都成立的最小正整数
。