本题共有3小题,第(1)小题满分4分,第(2)小题满分6分,第(3)小题满分6分.
已知椭圆的中心在坐标原点,焦点在
轴上,短轴长为2,且两个焦点和短轴的两个端点恰为一个正方形的顶点.过右焦点
与
轴不垂直的直线交椭圆于
两点.
(1)求椭圆的方程;
(2)当直线的斜率为1时,求
的面积;
(3)在线段上是否存在点
,使得以
为邻边的平行四边形是菱形?
若存在,求出的取值范围;若不存在,请说明理由.
设,求函数
的最大值和最小值.
(本小题满分12分)已知:定义在R上的函数,对于任意实数a, b都满足
,且
,当
.
(Ⅰ)求的值;
(Ⅱ)证明在
上是增函数;
(Ⅲ)求不等式的解集.
(本小题满分12分)已知函数,其中
为常数,且
(1)若,求函数
的表达式;
(2)在(1)的条件下,设函数,若
在区间
上是单调函数,求实数
的取值范围;
(3)是否存在实数使得函数
在
上的最大值是4?若存在,求出
的值;若不存在,请说明理由.
(满分12分)已知是定义在R上的奇函数,且当
时,
.
(Ⅰ)求的解析式;
(Ⅱ)问是否存在这样的正数a, b使得当时,函数
的值域为
,若存在,求出所有a, b的值,若不存在,说明理由.
(本小题满分12分)已知函数 f(x)=4x2-4ax+(a2-2a+2).
(1)若a=1, 求f(x)在闭区间[0,2]上的值域;
(2)若f(x)在闭区间[0,2]上有最小值3,求实数a的值.