选修4-1:几何证明选讲
过以为直径的圆上
点作直线交圆于
点,交
挺长线于
点,过
点作圆的切线交
于
点,交
挺长线于
点,且
。
(Ⅰ)求证;
(Ⅱ)设为
的中点,求证
设集合A={x|x2-x+m=0},B={x|x2+px+q=0},且A∩B={1},A∪B=A.
(1)求实数m的值;
(2)求实数p,q的值.
设二次函数f(x)=ax2+bx+c(a>0),方程f(x)﹣x=0的两个根x1,x2满足:0<x1<x2<.
(1)当x∈(0, x1)时,证明x<f(x)<x1;
(2)设函数f(x)的图象关于直线x=x0对称,证明x0<.
已知:,
(1)当时,恒有
,求
的取值范围;
(2)当时,恰有
成立,求
的值.
(3)当时,恒有
,求
的取值范围;
如图,四棱锥P﹣ABCD中,PA⊥底面ABCD,PA=2,BC=CD=2,∠ACB=∠ACD=
.
(Ⅰ)求证:BD⊥平面PAC;
(Ⅱ)若侧棱PC上的点F满足PF=7FC,求三棱锥P﹣BDF的体积.
如图,在正方体ABCD-A1B1C1D1中.
(1)若E为棱DD1上的点,试确定点E的位置,使平面A1C1E∥B1D;
(2)若M为A1B上的一动点,求证:DM∥平面D1B1C.