(本小题满分12分)
某菜园要将一批蔬菜用汽车从所在城市甲运至亚运村乙,已知从城市甲到亚运村乙只有两条公路,且运费由菜园承担.若菜园恰能在约定日期(
月
日)将蔬菜送到,则亚运村销售商一次性支付给菜园20万元; 若在约定日期前送到,每提
前一天销售商将多支付给菜园1万元; 若在约定日期后送到,每迟到一天销售商将少支付给菜园1万元.为保证蔬菜新鲜度,汽车只能在约定日期的前两天出发,且只能选择其中的一条公路运送蔬菜,已知下表内的信息:
(注:毛利润
销售商支付给菜园的费用
运费)
(Ⅰ) 记汽车走公路1时菜园获得的毛利润为(单位:万元),求
的分布列和数学期望
;
(Ⅱ) 假设你是菜园的决策者,你选择哪条公路运送蔬菜有可能让菜园获得的毛利润更多?
(本小题满分12分)
已知函数>0,
>0,
<
的图象与
轴的交点为(0,1),它在轴右侧的第一个最高点和第一个最低点的坐标分别为
和
(1)写出的解析式及
的值
;
(2)若锐角满足
,求
的值.
(本小题满分14分)
抛物线D以双曲线的焦点
为焦点
.
(1)求抛物线D的标准方程;
(2)过直线上的动点P作抛物线D的两条切线,切点为A,B.求证:直线AB过定点Q,并求出Q的坐
标;
(3)在(2)的条件下,若直线PQ交抛物线D于M,N两点,求证:|PM|·|QN|=|QM|·|PN|
(本小题满分13分)
已知数列{an}中,a2=p(p是不等于0的常数),Sn为数列{an}的前n项和,若对任意的正整数n都有Sn=.
(1)证明:数列{an}为等差数列;(2)记bn=+,求数列{bn}的前n项和Tn;
(3)记cn=Tn-2n,是否存在正整数N,使得当n>N时,恒有cn∈(,3),若存在,请证明你的结论,并给出一个具体的N值;若不存在,请说明理由.
(本小题满分12分).
已知函数在
上是减函数,在
上是增函数,函数
在
上有三个零点,且1是其中一个零点.
(1)求的值; (2)求
的取值范围;