设数列是各项均为正数的等比数列,其前
项和为
,若
,
.
(1)求数列的通项公式;
(2)对于正整数(
),求证:“
且
”是“
这三项经适当排序后能构成等差数列”成立的充要条件;
(3)设数列满足:对任意的正整数
,都有
,且集合
中有且仅有3个元素,试求
的取值范围.
已知是常数),且
(
为坐标原点).
(1)求函数的单调递增区间;
(2)若时,
的最大值为4,求
的值;
已知是椭圆
的左、右焦点,过点
作
倾斜角为的直线
交椭圆于
两点,
.
(1)求椭圆的离心率;
(2)若,求椭圆的标准方程.
已知函数的图象经过点
,曲线在点
处的切线恰好与
直线垂直.
(1)求实数的值;
(2)若函数在区间
上单调递增,求
的取值范围.
已知函数.
(1)解关于的不等式
;
(2)若对,
恒成立,求
的取值范围.
已知直线的参数方程为
(t为参数),曲线C的极坐标方程是
以极点为原点,极轴为x轴正方向建立直角坐标系,点
,直线
与曲
线C交于A,B两点.
(1)写出直线的普通方程与曲线C的直角坐标方程;
(2)线段MA,MB长度分别记|MA|,|MB|,求|MA|·|MB|的值.