已知椭圆的左右焦点分别为
、
,短轴两个端点为
、
,且四边形
是边长为2的正方形.
(1)求椭圆方程;
(2)若分别是椭圆长轴的左右端点,动点
满足
,连接
,交椭圆于点
,证明:
为定值;
(3)在(2)的条件下,试问轴上是否存在异于点
的定点
,使得以
为直径的圆恒过直线
的交点?若存在,求出点Q的坐标;若不存在,请说明理由.
已知函数的定义域为
.
(1)求函数在
上的最小值;
(2)对,不等式
恒成立,求实数
的取值范围.
某市公租房的房源位于三个片区,设每位申请人只申请其中一个片区的房源,且申请其中任一个片区的房源是等可能的,求该市的任4位申请人中:
(1)恰有2人申请片区房源的概率;
(2)申请的房源所在片区的个数的分布列和期望.
在直三棱柱ABC-A1B1C1中,已知AB=5,AC=4,BC=3,AA1=4,点D在棱AB上.
(1)若D是AB中点,求证:AC1∥平面B1CD;
(2)当时,求二面角
的余弦值.
已知数列的前n项和为
,
(1)证明:数列是等差数列,并求
;
(2)设,求证: