(本小题满分14分)在中,
,
.
(1)求的值;
(2)若,求
的面积.
(本小题满分14分)已知函数,且对任意
,都有
.
(1)求,
的关系式;
(2)若存在两个极值点
,
,且
,求出
的取值范围并证明
;
(3)在(2)的条件下,判断零点的个数,并说明理由.
(本小题满分14分)已知平面上的动点与点
连线的斜率为
,线段
的中点与原点连线的斜率为
,
(
),动点
的轨迹为
.
(1)求曲线的方程;
(2)恰好存在唯一一个同时满足以下条件的圆:
①以曲线的弦
为直径;
②过点;
③直径.求
的取值范围.
(本小题满分14分)已知数列的前
项和为
,且满足
,
(
).
(1)求,
的值;
(2)求数列的通项公式;
(3)是否存在整数对,使得等式
成立?若存在,请求出所有满足条件的
;若不存在,请说明理由.
(本小题满分14分)如图,是边长为
的等边三角形,
是等腰直角三角形,
,平面
平面
,且
平面
,
.
(1)证明:平面
;
(2)证明:.