2014年中国汽车销售量达到2000多万辆,成为世界汽车销售的冠军,各大品牌与国内自主品牌纷纷加大促销力度,争取2015年实现新的突破.某知名品牌的汽车店,对最近
位采用分期付款的购车者进行统计,统计结果如右表所示:已知分
期付款的频率为
.
店经销一辆该品牌的汽车,顾客分
期付款, 其利润为
万元;分
期或
期付款其利润为
万元;分
期或
期付款,其利润为
万元.用
表示经销一辆汽车的利润.
付款方式 |
分![]() |
分![]() |
分![]() |
分![]() |
分![]() |
频 数 |
40 |
20 |
![]() |
10 |
![]() |
(Ⅰ)求上表中的值;
(Ⅱ)若以频率作为概率,求事件:“购买该品牌汽车的
位顾客中,至多有
位采用
期付款”的概率
;
(Ⅲ)求的分布列及数学期望
.
已知椭圆的焦距为
,且过点
.
(1)求椭圆的方程;
(2)已知,是否存在
使得点
关于
的对称点
(不同于点
)在椭圆
上?若存在求出此时直线
的方程,若不存在说明理由.
某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局与某医院抄录了1至6月份每月10号的昼夜温差情况与因患感冒而就诊的人数,得到如下资料:
日期 |
1月10日 |
2月10日 |
3月10日 |
4月10日 |
5月10日 |
6月10日 |
昼夜温差x(°C) |
10 |
11 |
13 |
12 |
8 |
6 |
就诊人数y(个) |
22 |
25 |
29 |
26 |
16 |
12 |
该兴趣小组确定的研究方案是:先从这六组数据中选取2组,用剩下的4组数据求线性回归方程,再用被选取的2组数据进行检验.
(1)求选取的2组数据恰好是相邻两个月的概率;
(2)若选取的是1月与6月的两组数据,请根据2至5月份的数据,求出y关于x的线性回归方程;
(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问(2)中所得线性回归方程序是否理想?
如图1,在直角梯形中,
,
,
, 点
为
中点.将
沿
折起, 使平面
平面
,得到几何体
,如图2所示.
(1)在上找一点
,使
平面
;
(2)求点到平面
的距离.
已知函数.
(1)当时,解不等式
;
(2)若时,
,求
的取值范围.
已知曲线的参数方程为
为参数,
),直线
在参数方程是
为参数),曲线
与直线
有一个公共点在
轴上,以坐标原点为极点,
轴的正半轴为极轴建立极坐标系。
(1)求曲线的普通方程;
(2)若点在曲线
上,求
的值。