已知,直线l:y=-2,动点P到直线l的距离为d,且d=
.
(Ⅰ)求动点P的轨迹方程;
(Ⅱ)直线m:y=与点P的轨迹交于M、N两点,当
时,求直线m的倾斜角α的取值范围;
(Ⅲ)设直线h与点P的轨迹交于C、D两点,写出命题“如果直线h过点B,那么=-12”的逆命题,并判断该逆命题的真假,请说明理由.
如图,在平面直角坐标系xOy中,已知点A为椭圆=1的右顶点,点D(1,0),点P、B在椭圆上,
=
.
(1) 求直线BD的方程;
(2) 求直线BD被过P、A、B三点的圆C截得的弦长;
(3) 是否存在分别以PB、PA为弦的两个相外切的等圆?若存在,求出这两个圆的方程;若不存在,请说明理由.
已知△ABC的顶点为A(3,-1),AB边上的中线所在的直线方程为6x+10y-59=0,∠B的平分线所在的直线方程为x-4y+10=0,求BC边所在的直线方程.
直线y=2x是△ABC中∠C的平分线所在的直线,且A、B的坐标分别为A(-4,2)、B(3,1),求顶点C的坐标并判断△ABC的形状.
已知直线l:x+2y-2=0,试求:
(1) 点P(-2,-1)关于直线l的对称点坐标;
(2) 直线l1:y=x-2关于直线l对称的直线l2的方程;
(3) 直线l关于点(1,1)对称的直线方程.
直线l1:2x+y-4=0,求l1关于直线l:3x+4y-1=0对称的直线l2的方程.