(本小题12分)已知函数.(Ⅰ)当时,把的图像向右平移个单位得到函数的图像,求函数的图像的对称中心坐标;(Ⅱ)设,若的图象与直线的相邻两个交点之间的距离为π,求的值,并求函数的单调递增区间.
已知函数. (Ⅰ)求的最大值及最小值; (Ⅱ)若又给条件q:“|f(x)-m|<2”且P是q的充分条件,求实数m的取值范围
。
(理)在三棱锥S-ABC中,△ABC是边长为4的正三角形,平面SAC ⊥平面ABC,SA=SC=2,M、N分别为AB、SB的中点。 (Ⅰ)证明:AC⊥SB; (Ⅱ)求二面角N-CM-B的大小; (Ⅲ)求点B到平面CMN的距离.
(文)已知两定点满足条件的点P的轨迹是曲线E,直线y=kx-1与曲线E交于A、B两点。 (Ⅰ)求k的取值范围; (Ⅱ)如果且曲线E上存在点C,使求。
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号