已知展开式中各项的二项式系数和比各项的系数和大256;
(Ⅰ)求展开式中的所有无理项的系数和;
(Ⅱ)求展开式中系数最大的项.
如图,三条直线、
、
两两平行,直线
、
间的距离为
,直线
、
间的距离为
,
、
为直线
上的两个定点,且
,
是在直线
上滑动的长度为
的线段.
(1)建立适当的平面直角坐标系,求△的外心
的轨迹
;
(2)当△的外心
在
上什么位置时,使
最小?最小值是多少?(其中,
为外心
到直线
的距离)
(12分)已知两点满足条件
的动点P的轨迹是曲线
,
与曲线
交于
、
两点.
(1)求k的取值范围;
(2)如果求直线l的方程.
.如图,在三棱锥中,
平面
,
,
、
、
分别为棱
、
、
的中点,
,
(1)求证:;
(2)求直线与平面
所成角正弦值.
.(10分) 如图,已知线段AB、BD在平面内,线段
,
如果,
(1)求C、D两点间的距离.
(2)求点D到平面ABC的距离
.(本小题满分14分)
设函数.其中
为常数.
(Ⅰ)证明:对任意,
的图象恒过定点;
(Ⅱ) 设,若
为定义域
上的增函数,求
的最大值;
(Ⅲ)当时,函数
是否存在极值?若存在,求出极值;若不存在,说明理由.