已知椭圆的左、右焦点分别是
,离心率为
,过
且垂直于
轴的直线被椭圆
截得的线段长为
;
(Ⅰ)求椭圆的方程;
(Ⅱ)若P为椭圆C在第一象限内的任意一点,过点P且斜率为的直线与椭圆相切,设
的斜率分别为
,试证明
为定值,并求出此定值;
(Ⅲ)若直线与椭圆
交于不同的两点
,且原点O到直线l的距离为1,设
,当
时,求
的面积
的取值范围.
已知,数列
的前
项和为
,点
在曲线
上
,
且
(1)求数列的通项公式(2) 求证:
国家公务员考试,某单位已录用公务员5人,拟安排到A、B、C三个科室工作,但甲必须安排在A科室,其余4人可以随机安排。
(1)求每个科室安排至少1人至多2人的概率;
(2)设安排在A科室的人数为随机变量X,求X的分布列和数学期望。
设函数
(1)求函数的最小正周期;
(2)若函数的图像与函数
的图像关于原点对称,求
的值。
已知数列的前
项和为
,并且满足
,
.
(1)求的通项公式;
(2)令,问是否存在正整数
,对一切正整数
,总有
?若存在,求出的值,若不存在,说明理由.
设函数,其中
,
.
(1)求函数的单调增区间;
(2)在中,
分别是角
的对边,
,
,
,求
的面积.