游客
题文

(年湖南湘西12分)湘西盛产椪柑,春节期间,一外地运销客户安排15辆汽车装运A、B、C三种不同品质的椪柑120吨到外地销售,按计划15辆汽车都要装满且每辆汽车只能装同一种品质的椪柑,每种椪柑所用车辆部不少于3辆.
(1)设装运A种椪柑的车辆数为x辆,装运B种椪柑车辆数为y辆,根据下表提供的信息,求出y与x之间的函数关系式;

椪柑品种
A
B
C
每辆汽车运载量
10
8
6
每吨椪柑获利(元)
800
1200
1000

(2)在(1)条件下,求出该函数自变量x的取值范围,车辆的安排方案共有几种?请写出每种安排方案;
(3)为了减少椪柑积压,湘西州制定出台了促进椪柑销售的优惠政策,在外地运销客户原有获利不变的情况下,政府对外地运销客户,按每吨50元的标准实行运费补贴.若要使该外地运销客户所获利润W(元)最大,应采用哪种车辆安排方案?并求出利润W(元)的最大值?

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

如图,一次函数 y = kx + b ( k b 为常数, k 0 ) 的图象与 x 轴、 y 轴分别交于 A B 两点,且与反比例函数 y = n x ( n 为常数,且 n 0 ) 的图象在第二象限交于点 C CD x 轴,垂足为 D ,若 OB = 2 OA = 3 OD = 12

(1)求一次函数与反比例函数的解析式;

(2)记两函数图象的另一个交点为 E ,求 ΔCDE 的面积;

(3)直接写出不等式 kx + b n x 的解集.

如图,在 4 × 4 的方格纸中, ΔABC 的三个顶点都在格点上.

(1)在图1中,画出一个与 ΔABC 成中心对称的格点三角形;

(2)在图2中,画出一个与 ΔABC 成轴对称且与 ΔABC 有公共边的格点三角形;

(3)在图3中,画出 ΔABC 绕着点 C 按顺时针方向旋转 90 ° 后的三角形.

如图1,抛物线 y = a x 2 + 2 x + c x 轴交于 A ( 4 , 0 ) B ( 1 , 0 ) 两点,过点 B 的直线 y = kx + 2 3 分别与 y 轴及抛物线交于点 C D

(1)求直线和抛物线的表达式;

(2)动点 P 从点 O 出发,在 x 轴的负半轴上以每秒1个单位长度的速度向左匀速运动,设运动时间为 t 秒,当 t 为何值时, ΔPDC 为直角三角形?请直接写出所有满足条件的 t 的值;

(3)如图2,将直线 BD 沿 y 轴向下平移4个单位后,与 x 轴, y 轴分别交于 E F 两点,在抛物线的对称轴上是否存在点 M ,在直线 EF 上是否存在点 N ,使 DM + MN 的值最小?若存在,求出其最小值及点 M N 的坐标;若不存在,请说明理由.

【问题解决】

一节数学课上,老师提出了这样一个问题:如图1,点 P 是正方形 ABCD 内一点, PA = 1 PB = 2 PC = 3 .你能求出 APB 的度数吗?

小明通过观察、分析、思考,形成了如下思路:

思路一:将 ΔBPC 绕点 B 逆时针旋转 90 ° ,得到△ BP ' A ,连接 PP ' ,求出 APB 的度数;

思路二:将 ΔAPB 绕点 B 顺时针旋转 90 ° ,得到△ C P ' B ,连接 PP ' ,求出 APB 的度数.

请参考小明的思路,任选一种写出完整的解答过程.

【类比探究】

如图2,若点 P 是正方形 ABCD 外一点, PA = 3 PB = 1 PC = 11 ,求 APB 的度数.

如图,已知 D E 分别为 ΔABC 的边 AB BC 上两点,点 A C E D 上,点 B D E 上. F BD ̂ 上一点,连接 FE 并延长交 AC 的延长线于点 N ,交 AB 于点 M

(1)若 EBD α ,请将 CAD 用含 α 的代数式表示;

(2)若 EM = MB ,请说明当 CAD 为多少度时,直线 EF D 的切线;

(3)在(2)的条件下,若 AD = 3 ,求 MN MF 的值.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号